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Abstract 

Bivariate interval censored data arises in many applications. However, both 
theoretical and computational investigations for this type of data are limited 
because of the complicated structure of bivariate censoring. In this paper, we 
propose a two-stage spline-based sieve estimator for the association between two 
event times with bivariate case 2 interval censored data. A smooth and explicit 
estimator for the joint distribution function is also available. The proposed 
estimators are shown to be asymptotically consistent and computationally 
efficient. We demonstrate the finite sample performances of the spline-based  
sieve estimators using both simulation studies and real data analysis from an 
AIDS clinical trial study. 
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1. Introduction 

In some situations, the observation of random event time T is 
restricted to the knowledge that whether T is left of U, between U and V, 
or right of V, where U and V are two monitoring times with .VU <  This 
type of data is known as being interval censored; it is categorized as case 
2 interval censored data when ∞<<< VU0  and case 1 interval 
censored data or current status data when 0=U  or .∞=V  Interval 
censor data arises naturally in many applications, see, for example, 
animal tumorigenicity experiments in Hoel and Walburg [9], Finkelstein 
and Wolfe [5]; the studies of the age at weaning in Diamond et al. [3], 
Diamond and McDonald [4]; and acquired immunodeficiency syndrome 
(AIDS) studies in Shiboski and Jewell [17], and Jewell et al. [12]. 

The non-parametric maximum likelihood estimator (NPMLE) for the 
distribution function has been widely investigated for univariate interval 
censored data. For example, for current status data, Groeneboom and 
Wellner [8] and Huang and Wellner [10] studied the asymptotic 
properties of the NPMLE for current status data. Groeneboom and 
Wellner [8] also introduced a convex minorant algorithm to compute the 
NPMLE. For case 2 interval censored data, one may expect better 
estimation results than for current status data, since more information of 
the location of the event time is available. However, both theoretical and 
practical aspects of the problem are more complicated. Only iterative 
procedures are available for the computation of the NPMLE of the 
distribution function. For example, Groeneboom and Wellner [8] proposed 
iterative convex minorant (ICM) algorithm for this matter. Groeneboom 
and Wellner [8] and Wellner [23] found the convergence rate of the 
NPMLE for two different situations of the observation time distribution.  

Bivariate case 1 or case 2 interval censored data is collected to study 
two diseases in same patient or one common disease for two correlated 
subjects. Two main interests of these studies are the calibration of the 
association and the joint distribution of two event times. Goggins and 
Finkelstein [7] studied an example of bivariate case 2 interval censored 
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data from an AIDS clinical trial. The two event times of interest are the 
times to cytomegalovirus (CMV) shedding in the blood and in the urine. 
Although the patients in the study were assigned prescheduled clinic 
visit times, many missed some of the visits and returned with a change in 
laboratory results for CMV shedding, thus yielding interval censored 
times of CMV shedding in the blood and in the urine. The data set 
consists of 204 patients. For time to shedding in the urine, 49 patients 
were left censored, 88 were right censored, and 67 were interval censored. 
For shedding in the blood, 7 observations were left censored, 174 were 
right censored, and 23 were interval censored. CD4 cell count for each 
patient is related to immune system deterioration. 204 CD4 counts are 
dichotomized into high and low based on a threshold, 93 patients have 
high CD4 counts and 111 patients have low CD4 counts. 

To estimate the joint distribution function with bivariate case 2 
interval censored data, a non-parametric maximum likelihood estimation 
method can be generalized from the univariate case. For computing the 
generalized NPMLE, one needs to design an efficient searching algorithm 
for the non-zero mass intersection rectangles [e.g., 1, 6, 14, 25]. 
Alternatively, a semiparametric approach with copula model assumption 
is often used in studying bivariate censored data [e.g., 18, 22]. For 
bivariate case 2 interval censored data, Sun et al. [19] applied this 
semiparametric approach and proposed a two-stage maximum pseudo-
likelihood estimator for the association parameter between two event 
times. They computed the NPMLEs of the marginal distribution functions 
in the first stage, and then obtained the maximum pseudo-likelihood 
estimator for the association parameter. 

In Sun et al. [19], bootstrap method is necessary to estimate the 
standard error of the estimated association parameter, which is time-
consuming. So, it is worthwhile to develop a faster approach to estimate 
the marginal distribution functions. Moreover, the NPMLE of each 
marginal distribution function in Sun et al. [19] is neither smooth nor 
explicit. 
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In this paper, we investigate the association and joint distribution of 
two event times with case 2 interval censored data by using spline-based 
sieve estimation method. Very recently, the spline-based sieve maximum 
likelihood estimation method has often been used in survival analysis. 
See, for example, Lu et al. [13] and Zhang et al. [28]. Under a copula 
model, we adopt a two-stage approach and apply the spline-based sieve 
method to estimate the marginal distributions first, and then the 
association parameter. We make three contributions in this paper: The 
proposed two-stage estimators are asymptotically consistent; thanks to 
the spline procedure, the computation of the two-stage estimator for the 
association parameter is much more efficient than the two-stage 
semiparametric method in Sun et al. [19]; thanks to the spline procedure, 
the estimation for the joint distribution of two failure times is smooth and 
explicit. 

The rest of the paper is organized as follows. Section 2 proposes the 
spline-based semiparametric estimators. Section 3 summarizes the 
consistency of the proposed estimators. Section 4 illustrates the finite 
sample performances of the proposed method by simulation studies and a 
real AIDS clinical trial study. Section 5 summarizes the strengths of the 
proposed method and outlines some related future work. Section 6 
sketches the proof of the consistency for the spline-based sieve estimators 
for the marginal distribution function and the association parameter. 

2. Spline-Based Semiparametric  
Estimation 

2.1. Model and likelihood 

Let ( )21, TT  be the two event times of interest and ( )11, VU  and 

( )22, VU  are the two pairs of random monitoring times for 1T  and ,2T  

respectively. In this setting, the observation of bivariate case 2 interval 
censored data consists of 

( ( ) ( ) ( ) ( ) ( ) ( )),,,,, 11
3
1111

2
111

1
111 VTIVTUIUTIVU >=∆≤<=∆≤=∆  
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( ( ) ( ) ( ) ( ) ( ) ( )),,,,, 22
3
2222

2
222

1
222 VTIVTUIUTIVU >=∆≤<=∆≤=∆  

(1) 

where ( )⋅I  is the indicator function. The joint distribution of the two 

event times is assumed to follow a copula model, that is, the joint survival 
function  

( ) ( ) ( ( ) ( ))2211221121 ,,, tStSCtTtTPttS α=>>=  

( ( ) ( ))., 2211 tTPtTPC >>= α  

Different copula models can be used to construct the above joint 
distribution function [15]. For example, we can choose the Clayton copula 

( ) ( ) ( ) ,0,1, /1 >α−+= α−α−α−
α vuvuC   (2) 

where α  is an association parameter with a larger α  corresponding to a 
stronger positive association between the two marginal distributions and 

0→α  corresponding to independence between the two event times. The 
association parameter α  and Kendall’s τ  for the Clayton copula, are 
related by ( ).2+αα=τ  

Consider n pairs of bivariate current status data (1), { ,, ,1,1 kk vu  

( ) ( ) ( ) }nkkkk ,,2,1:,, 3
,1

2
,1

1
,1 "=δδδ  and { ( ) ( ) ( ) ,1:,,,, 3

,2
2
,2

1
,2,2,2 =δδδ kvu kkkkk  

}.,,2 n"  Suppose that ( )21, TT  and ( )2211 ,,, VUVU  are independent 

and ( )2211 ,,, VUVU  are non-informative to ( )., 21 TT  Then, under the 

Clayton copula model (2), the log-likelihood for the observed data can be 
expressed as 

( ) { ( ) ( ) ( ) ( ) ( ) ( )kkkkkk

n

k
n xSxSl ,log,logdata; 2,1

2
,2

1
,11,1

1
,2

1
,1

1
αδδ+αδδ=⋅ ∑

=

 

( ) ( ) ( ) ( ) ( ) ( )kkkkkk xSxS ,log,log 1,2
1
,2

2
,13,1

3
,2

1
,1 αδδ+αδδ+  

( ) ( ) ( ) ( ) ( ) ( )kkkkkk xSxS ,log,log 3,2
3
,2

2
,12,2

2
,2

2
,1 αδδ+αδδ+  
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( ) ( ) ( ) ( ) ( ) ( )kkkkkk xSxS ,log,log 2,3
2
,2

3
,11,3

1
,2

3
,1 αδδ+αδδ+  

( ) ( ) ( )},,log 3,3
3
,2

3
,1 kkk xS αδδ+  (3) 

where 

( ) ( ) ( )kkkk uSuTuTPxS ,11,22,111,1 1,, −=≤≤=α  

( ) ( ( ) ( )),, ,22,11,22 kkk uSuSCuS α+−  

( ) ( ) ( ) ( )kkkkkk vSuSvTuuTPxS ,22,22,22,2,112,1 ,, −=≤<≤=α  

( ( ) ( )) ( ( ) ( )),,, ,22,11,22,11 kkkk uSuSCvSuSC αα −+  

( ) ( ) ( ) ( ( ) ( )),,,, ,22,11,22,22,113,1 kkkkkk vSuSCvSvTuTPxS α−=>≤=α  

( ) ( ) ( ) ( )kkkkkk vSuSuTvTuPxS ,11,11,22,11,11,2 ,, −=≤≤<=α  

( ( ) ( )) ( ( ) ( )),,, ,22,11,22,11 kkkk uSuSCuSvSC αα −+  

( ) ( )kkkkk vTuvTuPxS ,22,2,11,12,2 ,, ≤<≤<=α  

 ( ( ) ( )) ( ( ) ( ))kkkk vSuSCuSuSC ,22,11,22,11 ,, αα −=  

( ( ) ( )) ( ( ) ( )),,, ,22,11,22,11 kkkk vSvSCuSvSC αα +−  

( ) ( )kkkk vTvTuPxS ,22,11,13,2 ,, >≤<=α  

 ( ( ) ( )) ( ( ) ( )),,, ,22,11,22,11 kkkk vSvSCvSuSC αα −=  

 ( ) ( ) ( ) ( ( ) ( )),,,, ,22,11,11,22,111,3 kkkkkk uSvSCvSuTvTPxS α−=≤>=α  

( ) ( ) ( ( ) ( ))kkkkkk uSvSCvTuvTPxS ,22,11,22,2,112,3 ,,, α=≤<>=α  

  ( ( ) ( )),, ,22,11 kk vSvSCα−  

( ) ( ) ( ( ) ( )).,,, ,22,11,22,113,3 kkkkk vSvSCvTvTPxS α=>>=α  
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To estimate the association parameter ,α  we maximize ( )data;⋅nl  in 
(3) by using a two-stage procedure. In the first stage, we estimate two 
marginal distribution functions. In the second stage, we substitute the 
estimated marginal distribution functions into the likelihood function to 
get a pseudo-likelihood function and maximize the pseudo-likelihood 
function to obtain an estimate for .α  

2.2. Spline-based sieve estimation for the marginal distribution 
functions 

We denote the marginal distribution functions of 1T  and 2T  as 1F  
and 2F  with the real ones 1,0F  and ,2,0F  respectively. The likelihoods for 

the two univariate samples are given by: 

( ) { ( ) ( ) ( ) ( ( ) ( ))krrkrrkrkrrkr

n

k
rn uFvFuFl ,,

2
,,

1
,

1
, loglogdata; −δ+δ=⋅ ∑

=

 

( ) ( ( ))},1log ,
3
, krrkr vF−δ+  (4) 

for .2,1=r  For simplification, we only provide the estimation for .1,0F  

The estimation for 2,0F  can be obtained by using the same approach. 

Suppose all observation times for 1T  are inside a bounded region [ ]., 11 RL  
Let 

{ ( ) ( ) ( ) ( ) ( ) { } [ ]}.,,,,,,1,0: 11111111 RLttttttFtFtFtFtF ⊂′′′′′<′′′≤′≤≥=F  

Hence, the NPMLE of 1,0F  is defined as 

( ).data;maxargˆ 1,1 11 ⋅= ∈ nF lF F   (5) 

The main idea of the spline-based sieve method is to find 1F̂  in (5) in 
a sub-class of ,1F  but “approximating” to 1F  asymptotically. In this 
paper, the spline-based sieve method greatly reduces the unknown 
variables in the maximization problem, which makes the computation 
much faster. At the same time, the spline-based sieve method produces 
smooth and explicit estimates for the marginal distribution functions. In 
the proposed spline-based sieve estimation procedure, the two marginal 
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distribution functions are independently estimated by linear combinations 
of spline basis functions. Thus, maximizing the log likelihood with respect 
to the unknown functions is converted to maximizing the sieve log 
likelihood with respect to the unknown spline coefficients subjecting to 
corresponding inequality constraints. 

Consider the normalized B-spline basis functions of order l [16]: 

{ ( )} np
i

l
i tN 1=  are constructed on [ ]11, RL  with the knot sequence { } lp

ii nu +
=1  

satisfying ,11111 RuuuuuuL lpppll nnn ===<<<<=== +++ """  

where ( )v
n nOp =  for some .10 << v  If the number of interior knots of 

the knot sequence is ,nm  it is obvious that .lmp nn +=  

Define 

( ) ( ) ( ) .10,: 21
1

1,1,1,












≤β≤≤β≤β≤β==Ω ∑
=

n

n

p
l
ii

p

i
nnn tNtFtF "  (6) 

To obtain the B-spline-based sieve likelihood with case 2 interval 
censored data, we replace 1F  in (4) by 1,nF  in (6). Then, 

( ) ( ) ( ) ( ) ( ( )






βδ+βδ=β ∑∑∑
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l
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ii
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i
k

n

k
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1
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( )) ( ) ( ( )) .1log ,1
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3
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β−δ+β− ∑∑
==

k
l
ii

p

i
kk

l
ii

p

i
vNuN

nn
 (7) 

Hence, the proposed sieve maximum likelihood estimator (MLE) with 
the B-spline basis functions is given by 1,ˆnF  that maximizes (7) over .nΩ  

It can be easily argued that 1F⊂Ωn  by the properties of B-spline basis 

functions [16]. Then the spline-based sieve MLE 1,ˆnF  will be inside ,1F  

and hence can be viewed as an approximation for 1F̂  in (5). In Section 3, 

we show that 1,ˆnF  converges to the true target function under some 

regularity conditions. 
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2.3. Estimators of the association parameter and the joint 
distribution function 

Suppose 1,ˆnF  and 2,ˆnF  are spline-based sieve MLEs of 1,0F  and 

,2,0F  respectively. By replacing 1S  and 2S  in (3) by 1,1 ˆ1ˆ
nFS −=  and 

,ˆ1ˆ 2,2 nFS −=  and maximizing the resulting likelihood function with 

respect to ,α  we can obtain a semiparametric estimator α̂  for the real 

association parameter ,0α  and hence estimator ( )2ˆˆˆ +αα=τ  for the 

real Kendall’s .0τ  

If the Clayton copula model (2) is chosen in the joint distribution, the 
proposed two-stage semiparametric estimator for the joint distribution 
function ( ( ) ( ))22,011,0 ,0 tFtFCα  is given by 

( ( ) ( )) ( ( ) ( ) ) .1ˆˆˆ,ˆ ˆ/1ˆ
22,

ˆ
11,22,11,ˆ

α−α−α−
α −+= tFtFtFtFC nnnn  (8) 

3. Asymptotic Properties 

In this section, we study the asymptotic properties of the two-stage 
spline-based sieve estimator .α̂  Once we establish the consistency of the 
spline-based sieve MLEs of 1,0F  and ,2,0F  the consistency of two-stage 

spline-based sieve estimators for the association parameter 0α  and the 

joint distribution function follow directly. 

The following conditions (C1)-(C5) sufficiently guarantee the 

asymptotic results for 1,ˆnF  described in Theorem 1: 

(C1) ( ) dttdF 1,0  has a positive lower bound 0b  on [ ]., 11 RL  

(C2) ( )tF 1,0  has continuous derivative ( ) pp dttFd 1,0  on [ ],, 11 RL  

which implies that ( ) dttdF 1,0  has a positive upper bound on [ ]., 11 RL  
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(C3) The observation times 1U  and 1V  both follow distributions only 
taking values within [ ]11, rl  with 11 Ll >  and ;11 Rr <  there exists a 
positive number η  such that ( ) .111 =η≥−UVP  

(C4) The probability densities of distributions of 1U  and 1V  have 
positive lower bounds at every point on [ ]η−11, rl  and on [ ],, 11 rl η+  
respectively. 

(C5) The knot sequence { } lp
ii nu +
=1  of the B-spline basis functions 

{ } ,1
np

i
l
iN =  satisfies that ( ) ( )u

ii
u
ii ∆∆ maxmin  has positive lower bound, 

which is not greater than 1, where ( )
ii

u
i uu −=∆ +1  for .,, npli …=   

Consider a sub-class of 1,nΩ  defined by (6) as 

( ) ( ) ( ) ,1,0,: 1
1

1,1,1,






≤β≥ββ==Ω′ ∑
=

n

n

p
l
ii

p

i
nnn tNtFtF  

( )

.1,,1,
min

111:0
1







−=
∆β

≥β−β
≤≤

+ n

u
ipili

jj pjl
n "  

We propose to find the estimator in 1,nΩ′  mainly due to the technique 

convenience in justifying the asymptotic properties. In computation, the 
parameter 0b  can be chosen small enough so that 1,nΩ  and 1,nΩ′  would 

result in the same estimate. 

We study the asymptotic properties in the feasible region for 
observation times: [ ]., 11 rl  Let { ( ) [ ]}.,,: 111,1,1,1, rltFtF nnnn ∈Ω∈=Ω ′′  

Under (C3), the maximization of ( )data;~
1, βnl  over 1,nΩ′  is actually the 

maximization of ( )data;~
1, βnl  over .1,nΩ′′  Throughout the study of the 

asymptotic properties, we denote 1,ˆnF  as the maximizer of ( )data;~
1, βnl  

over .1,nΩ′′  



SIEVE ESTIMATION WITH BIVARIATE INTERVAL … 47

Let ( ) ( ) ( ) rrrr
QL dQffQf

r
/1/1 ∫==  be the ( )-QLr norm associated 

with probability measure Q. In the following, ( )-11,VUr PL norm, 

( )-1Ur PL norm, and ( )-1Vr PL norm denote -rL norms associated with the 

joint and marginal probability measures of observation times ( )., 11 VU  

Similarly, ( )-PLr norm is denoted as the -rL norm associated with the 

joint probability measure P of observation and event times ( ).,, 111 VUT  

Thus, the -2L norms distance between 1,1, nnF Ω′′∈  and 1,0F  is 

defined as 

( ) ( ( ) ( ) ) ., 2/12
1,01,

2
1,01,1,01,1

1212 VU PLnPLnn FFFFFFd −+−=  

Theorem 1. Suppose (C1)-(C5) hold. If ( )v
n nOp =  for ( ),41 pv ≤  

that is, the number of interior knots of knot sequence { } lp
i nu +

1  is in the 

order of vn  for ( ),41 pv ≤  then 

( ) ( { ( ) } ).,ˆ 3/1,min
1,01,1

vpv
pn nOFFd −−=  

Theorem 1 implies that the proposed sieve estimator converges at a 

rate not faster than ,4/1n  and the rate of convergence reaches 4/1n  for 

1≥p  and ( ).41 pv =  If ,1=p  then 41=v  and the number of 

interior knots could be chosen as .4/1n  This choice is mainly of interest 
for the asymptotic properties when n is very large. In practice, for the 
number of interior knots 1, +nn mm  is often chosen as the closest 

integer to .3/1n  For moderate sample sizes, say n = 200 or 400, our 
experiments show that such nm  is a reasonable choice for the number of 

interior knots, and hence, the number of spline basis functions is 
determined by 4+= nn mp  in our computation. 
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Remark 1. With the similar regularity conditions as (C1)-(C5), the 

spline-based sieve MLE 2,ˆnF  for 2,0F  has the same convergence rate as 

described in Theorem 1. 

The following two conditions are used to prove the consistency of :α̂  

(D1) Let ( )2211 ,,, vuvu=λ  and ( ( ) ( ) ( ) ( ) ( ) ( ) ).,,,,, 3
2

2
2

1
2

3
1

2
1

1
1 δδδδδδ=δ  

Suppose ( )δλα ,;,, 211 SSl  be the log-likelihood defined in (3) for 

observed data of size 1. Then ( ) ( ;,,,,;,, 211
33

211
3 SSlSSl α∂α∂δλα∂  

) ,, 1
2 S∂α∂δλ  and ( ) 2

2
211

3 ,;,, SSSl ∂α∂δλα∂  are continuous and 
bounded for a compact neighborhood of .0α  

(D2) Suppose ( )δλα ,;g  is the probability density function of ( ,1U  

).,,, 221 ∆VUV  Then  [ ( ) ] ( ) λδλαα∂δλα∂− ∫∑δ
dgSSl ,;,;,, 0

2
2101  is 

negative, where the summation is over all possible δ  for .0α  

Theorem 2. Under (C1)-(C5), 5 similar conditions as (C1)-(C5) for 

establishing the asymptotic properties of ,ˆ 2,nF  and (D1), (D2). α̂  described 

in Subsection 2.3 is consistent estimator, that is, 

.ˆ 0α→α p  

Remark 2. By continuous mapping theorem, we can easily see the 
estimated joint distribution function described in Subsection 2.3 is a 
consistent estimator. 

4. Numerical Experiments 

4.1. Computation of the proposed spline-based sieve estimators 

Given ,np  the proposed sieve estimation problem described in 

Subsection 2.2 becomes a restricted parametric maximum likelihood 
estimation problem with respect to the coefficients of the B-spline basis 
functions. In this section, we apply the generalized gradient projection 
algorithm [11] to compute the spline-based sieve MLEs for two marginal 
distribution functions. 
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The standard error of α̂  can be estimated by bootstrap method. We 
draw bootstrap samples of size n with replacement from the observed 

data { ( ) ( ) ( ) }nkvu kkkkk ,,2,1:,,,, 3
,1

2
,1

1
,1,1,1 "=δδδ  and { ( ) ,,, 1

,2,2,2 kkk vu δ  

( ) ( ) }nkkk ,,2,1:, 3
,2

2
,2 "=δδ  independently M times, where M is a fixed 

integer. Then, we have an estimate of 0α  from each of the M bootstrap 

samples, the standard deviation of these M estimates is the bootstrap 
standard error of .α̂  We estimate the standard error of τ̂  from the 
bootstrap standard error of α̂  by using delta method. 

4.2. Simulation studies 

In the simulation studies, we first compare the proposed spline-based 
sieve estimators α̂  and τ̂  to the two-stage semiparametric maximum 
pseudo-likelihood estimators α~  and τ~  studied by Sun et al. [19]. Then, 
we compute the estimated joint distribution function proposed in 
Subsection 2.3. 

We compute α~  by using the ICM algorithm, which is justified by 
Zhang and Jamshidian [27] to be the fastest algorithm for compute the 
NPMLE for the distribution function with case 2 interval censored data. 

We simulate the data with combinations of 0α  values ( )2,10 =α  

and sample sizes (n = 200, 400). Under each of these four settings, we 
conduct the Monte-Carlo simulation with 500 repetitions and 200 
bootstrapping samples. We use the cubic ( )4=l  B-spline basis functions 

in the proposed spline-based sieve method. ( )21, TT  are generated from 

the Clayton copula with two marginal distributions being exponential 
with the rate parameter 0.5. We set ( ) 1.05Pr <≥iT  for 2,1=i  and 

[ ] [ ]2211 ,, RLRL ×  to be [ ] [ ].5,05,0 ×  For iUi ,2,1=  is generated from 

uniform distribution on [0.0201, 3] and iii WUV +=  with W being 

generated from uniform distribution on [0.05, 1.7698]. Thus, we have 
( ) ( ) .01.057698.4Pr0201.00Pr =<<=<< ii TT  The observation region 
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[ ] [ ] [ ] [ ]7698.4,0201.07698.4,0201.0,, 2211 ×=× rlrl  is inside [ ] [ ].5,05,0 ×  

Based on the discussion on the knots selection in Section 3, we choose 5 
and 6 as the numbers of interior knots for sample size 200 and 400, 
respectively. Two end knots of the knot sequences are chosen to be 0 and 
5, the interior knots are allocated at the ( )1+nmw  quantiles, 

nmw ,,1 …=  of { } ( ) { } ( ) ,0:,0:, 1
,

3
, =δ=δ kiki kkikki vu ∪  where { }n

kkiu 1, =  and 

{ }n
kkiv 1, =  are samples of size n = 200 or 400 from iU  and iV  for ,2,1=i  

respectively. 

Table 1 compares the spline-based method with the method proposed 
by Sun et al. [19] for estimating association parameter 0α  and Kendall’s 

0τ  in terms of bias, sample standard deviation (SD), bootstrap standard 

error (SE), and bootstrap coverage probability (CP). Our proposed spline-
based sieve method works at least as good as the method in Sun et al. 
[19] in terms of the estimation bias, or works a little better in terms of 
the estimation standard error. Moreover, the computing speed for the 
proposed spline-based method is at least 20 times faster than the speed 
for computing the estimated association parameter in Sun et al. [19]. It is 
worthwhile to note that the coverage probability (CP) values in all 
settings for the proposed spline-based sieve estimators are very close to 
95%, which give some numerical evidence for the asymptotic normality 
for α̂  and .τ̂  This observation can be used to construct some hypothesis 
tests based on asymptotic normality. 
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Table 1. The comparisons between the proposed spline-based sieve 
estimators ( )τ̂,α̂  and the two-stage estimators ( )τ~,~α  in Sun et al. [19] in 
their finite sample performances 

200,10 ==α n  400,10 ==α n  

 Bias SD SE CP Bias SD SE CP 

α̂  0.0909 0.2526 0.2891 97%    0.0088 0.1736 0.1866 95% 

α~  0.1534 0.6100 0.4949 96%    0.0446 0.2383 0.3727 98% 

τ̂  0.0152 0.0549 0.0602 97% − 0.0003 0.0386 0.0411 95% 

τ~  0.0186 0.0787 0.1026 96% − 0.0147 0.0584 0.0874 100% 

200,20 ==α n  400,20 ==α n  

 Bias SD SE CP Bias SD SE CP 

α̂  0.0961 0.4257 0.4937 98% 0.0555 0.3476 0.3288 92% 

α~  − 0.0190 0.4650 0.7055 100%  − 0.0360 0.4344 0.6475 98% 

τ̂  0.0066 0.0506 0.0585 96% 0.0033 0.0424 0.0400 94% 

τ~  − 0.0091 0.0586 0.0903 100%  − 0.0115 0.0654 0.0891 100% 

Figure 1 graphically presents the bias of the estimated joint 
distribution function from the same Monte-Carlo simulation discussed 
above for sample size 200. We can see the bias inside region [0.1, 4.7] ×  
[0.1, 4.7] is promising. 
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Figure 1. The bias of estimated joint survival function in the region           
[0.1, 4.7] ×  [0.1, 4.7] when 10 =α  (top) and 20 =α  (bottom) with 
sample size n = 200. 

In Table 2, we calculate the average estimation bias and the average 
square root of the mean square error for 2209 values of ( ),, 21 ss  where 

both 1s  and 2s  uniformly take 47 values from 0.1 to 4.7. 

Table 2. The overall bias and square root of mean square error of 
estimated joint distribution function when sample size n = 200 

 Bias MSE1/2 

10 =α  − 2.03e−3 3.80e−2 

20 =α      2.60e−4 4.23e−2 

 



SIEVE ESTIMATION WITH BIVARIATE INTERVAL … 53

4.3. A real example 

The proposed sieve semiparametric method is illustrated by the data 
from the AIDS clinical trial introduced in Section 1 [7]. In computation, 
we assume that the joint distribution of the real data follows the Clayton 
copula and the association parameter is .α  We use cubic spline basis 
functions and perform knots selection as the way in simulation studies. 
We also draw 200 independent bootstrap samples. For the 93 patients 
with high CD4 counts, the estimated association parameter between 
times to CMV shedding in the blood and in the urine is 1.62 with 
bootstrap standard error 0.700. For the 111 patients with low CD4 
counts, the estimated association parameter is 1.71 with bootstrap 
standard error 0.598. As mentioned in simulation studies, we can test 
whether blood shedding and urine shedding are correlated by testing 

0=α  based on asymptotic normality. The p-values for testing 0=α  for 
high and low CD4 counts patients are 0.01039 and 0.00215, respectively. 
The p-value for testing whether association parameters for two groups of 
patients are equal, is 0.46093. This implies neither of the two association 
parameters is equal to 0, and the two association parameters are not 
significantly different. Figure 2 sketches the estimated joint survival 
function of two event times in months in the region [1, 18] ×  [1, 18]. 

 
Figure 2. The estimated joint survival function of times in months to 
CMV blood shedding and urine shedding in the region [1, 18] ×  [1, 18]. 
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Table 3 shows the values of the estimated joint distribution at some time 
points, the first column represents time to blood shedding in months and 
the first row represents time to urine shedding in months. We can see 
that the estimated survival function of time to blood shedding decreases 
very slow over time. It may be due to a large portion of right censored 
data being observed. 

Table 3. The estimated joint survival function of times in months to 
CMV blood shedding and urine shedding at some time points 

    Urine shedding   

 Months 3 6 9 12 15 18 

3 0.6007 0.5276 0.4635 0.4037 0.3701 0.3621 

6 0.5913 0.5212 0.4592 0.4009 0.3678 0.3600 

9 0.5858 0.5174 0.4566 0.3992 0.3665 0.3588 

12 0.5748 0.5098 0.4513 0.3956 0.3638 0.3562 

15 0.5660 0.5036 0.4471 0.3927 0.3615 0.3541 

Blood shedding

18 0.5587 0.4985 0.4435 0.3903 0.3596 0.3523 

5. Discussion 

Bivariate case 2 interval censored data arises in many applications. 
The main interest is to estimate the association parameter and the joint 
distribution of the two event times. In this paper, we propose a two-stage 
spline-based sieve semiparametric maximum pseudo-likelihood estimator 
for the association parameter, and hence, a smooth and explicit estimator 
for the joint distribution of two case 2 interval censored data. We have 
proved that the proposed estimators are consistent and simulation 
studies give some evidences for the asymptotic normality for the 
estimated association parameter. Simulation studies also show that the 
finite sample performances of the estimated association parameter is at 
least as good as the performances of Sun et al. [19]’s estimator, but with 
much shorter computing time compared to its counterpart, and that the 
estimated joint distribution is generally satisfactory with sample size 200. 
Our proposed method is also illustrated by an AIDS clinical trial study, 
with a result that two event times of interest seem to be dependent based 
on the observed data. 
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If an easy-to-compute standard error of the proposed estimated 
association parameter could be discovered based on asymptotic normality 
theory, the computing time in this paper will be further reduced. We can 
try to use the spline-based sieve estimation method to solve problems 
with bivariate case 1 interval censored data or bivariate right censored 
data. 
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Appendix 

Proof of Theorem 1. In this proof, we denote K as a universal 
positive constant that may be different from place to place and =fnP  

( ),1
1 i

n
i Xfn∑ =

 the empirical process indexed by ( ).Xf  

Before deriving the convergence rate, we need to show that the sieve 

estimator nF̂  is consistent. This can be accomplished by verifying the 

conditions of Theorem 5.7 of van der Vaart [21]. 

For { } [ ]11,,, rlttt ⊂′′′  with ,htt ≥′−′′  and ,0,0 21 >> bb  and 

,03 >b  we define 1Ω  by { ( ) ( )tFtF 111 :=Ω  is nondecreasing; ( ) ,11 btF ≥′  

( ) ( ) ( ) }.,1 31121 btFtFbtF ≥′−′′≥′′−  If ,, 21 bb  and 3b  are small enough, 

then under (C1) and (C5), it can be shown that 11,0 Ω∈F  and .11, Ω⊂Ω ′′n  

Let { ( ) },: 1111 Ω∈= FFlL  where ( ) ( ) ( ) ( )[ loglog 2
11

1
11 δ+δ= uFFl  

( ) ( )] ( ) [ ( )],1loglog 1
3

111 vFvFvF −δ+−  with ( )
[ ]

( )
[ ],1,1 11

2
1

1
1 vTuuT ≤<≤ =δ=δ  

and ( )
[ ] ,1 1

3
1 vT >=δ  Denote ( ) ( )11 FPlF =M  and ( ) ( ),11 FlF nn PM =  hence 

( ) ( ) ( ) ( ).111 FlPFF nn −=− PMM  

By Theorem 2.7.5 of van der Vaart and Wellner [20], there exist 

brackets [ ] [( ) ]Ku
i

l
i iFF 1,,1,, "=  to cover 1Ω  and satisfy 

;1 ≤− l
i

u
iU FFP  and there exist brackets [ ] [( ) ]Ku

j
l
j jGG 1,,1,, "=  

to cover 1Ω  and satisfy .1 ≤− l
j

u
jV GGP  

Hence, we can construct brackets [ ] [( ) ],1,,2,1,, ,,
Ku

ji
l

ji ill "=  

[( ) ]Kj 1,,2,1 "=  such that for any ( ) ,11 L∈Fl  there exist ji,  such 

that ( ) ,,1,
u

ji
l

ji lFll ≤≤  where 

( ) ( )[ ] ( )[ ],log1logloglog 3
1

2
1

1
1,

u
j

u
i

l
j

l
i

l
ji GFGFl −δ+−δ+δ=  
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and 

( ) ( )[ ] ( )[ ].log1logloglog 3
1

2
1

1
1,

l
j

l
i

u
j

u
i

u
ji GFGFl −δ+−δ+δ=  

Using Taylor’s expansion along with the property of ,1Ω  we can 

demonstrate that KllP l
ji

u
ji ≤− ,,  for all ., ji  So the  -bracket number 

for 1L  with ( )-1 PL norm is less than ( ) ,1 K  which is bounded. As 
( ( )) []( ( )) 11111 ,,,2,, LLL PLNPLN  ≤  is Glivenko-Cantelli by Theorem 

2.4.3 of van der Vaart and Wellner [20]. Therefore, 

( ) ( ) .0sup 1111 PnF FF →−Ω∈ MM  

For any ,11 Ω∈F  we have 

( ) ( ) { ( ) ( )}11,011,0 FlFlPFF −=− MM  

( ) ( )
( )

( ) ( ) ( )
( ) ( )

( ) ( )
( ) 








−
−

δ+
−
−

δ+δ= vF
vF

uFvF
uFvF

uF
uF

P
1
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1,01,02
1

1

1,01
1 1

1
logloglog  

( )
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( ) ( ( ) ( ))
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( ) ( )uFvF

uFvF
uFvFuF

uF
uFP VU
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1,01,0
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1,0
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log1  
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( )
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uFvF
muFvFuF
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muFP VU
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1
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1,0
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−
−

−+ vF
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mvF  

where ( ) ( ) 411log 2−≥+−= xxxxxm  for .50 ≤≤ x  Then by the 

definition of ,1Ω  we can argue that { ( ) (
( )
( ) )} 111 1

1,0
1, UVU KPuF

uF
muFP ≥  

{ ( ) ( )}2
11,0 uFuF −  and {( ( )) (

( )
( ) )} { ( )vFKPvF

vF
mvFP VVU 1,0

1

1,0
1, 111 1

1
1 ≥

−
−

−  

( )} .2
1 vF−  Hence, 
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( ) ( ) [ { } { } ] ( ) ., 2
11,0

2
11,0

2
11,011,0 11 FFKdFFPFFPKFF VU =−+−≥− MM  

Then ( ) ( ) ( ) ( ).sup 1,0
2

1,01,,: 111,011 FKFFFFFdF MMM <−≤Ω∈≥   

Under (C2), by Jackson type theorem on page 149 of De Boor [2], for 
,2+≥ pl  there exists ,1,1, nnF Ω′′∈  such that 

( ).1,01,
pvp

nn nOKpFF −−
∞ =≤−  

Let { ( ) ( )}.,: 1,01,1,1,1,1,
pv

nnnnn nKFFFFl −
∞ ≥−Ω ′′∈=L  Using 

similar argument to that for showing 1L  is a Glivenko-Cantelli, we can 

prove the - bracketing number for 1,nL  associated with ( )-2 PL norm is 

finite, hence 1,nL  is a P-Donsker. By the dominated convergence theorem, 

it is easy to see that { ( ) ( )} 01,01, →− FlFlP n  as ,∞→n  hence 

( ) { ( ) ( )} ( ),2/1
1,01,

−=−− nOFlFlP pnnP  

by the fact that both ( )1,nFl  and ( )1,0Fl  are in 1L  and the relationship 

between Donsker and asymptotic equicontinuity given by Corollary 2.3.12 
of van der Vaart and Wellner [20]. By the dominated convergence theorem 
again, { ( ) ( )} ( ).11,01, oFlFlP n −>−  Therefore, 

( ) ( ) ( ) ( ) ( ) ( )1,01,1,1,1,01, ˆˆ FFFFFF nnnnnnnnnn MMMMMM −+−=−  

( ) ( )1,01, FlFl nnn PP −≥  

( ){ ( ) ( )} { ( ) ( )}1,01,1,01, FlFlPFlFlP nnn −+−−= P  

( ) ( ) ( ).112/1
pp oono −=−≥ −  

This completes the proof for ( ) .0,ˆ 1,01, pn FFd →  

Next, we verify the conditions of Theorem 3.4.1 of van der Vaart and 
Wellner [20] to derive the convergence rate. First, we already showed in 

the proof of consistency that { ( ) ( )} ( )., 1,1,0
2

1,1,0 nn FFKdFlFlP ≥−  
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Second, in the proof of consistency, we know that ( ) nnn F MM −1,ˆ  

( ) ,,2,11,0 nn IIF +≥  where ( ) { ( ) ( )}1,01,,1 FlFlPI nnn −−= P  and nI ,2  

{ ( ) ( )}.1,01, FlFlP n −=  If ( ),41 pv ≤  then by ( ),2/1
,1

−= noI pn  we 

have 

( ).2
,1

pv
pn noI −=  

Using the fact that ( ) ( )211log −≤+−= xxxxxm  for x close to 1, it is 

easy to see that { ( ) ( )} ( ),22
1,1,01,1,0

pv
nn nOFFKFlFlP −

∞ =−≤−  

which means that 

( ).2
,2

pv
n nOI −−≥  

Thus, we conclude that 

( ) ( ) ( ) ( { ( ) } ).ˆ 3/1,min22
1,01,

vpv
p

pv
pnnn nOnOFF −−− −=−≥− MM  

Let { ( ) ( ) ( ) }.,,: 1,01,1,1,1,01,, δ≤Ω ′′∈−=δ FFdFFlFl nnnnnL  By 

Lemma 8.6 of Wu and Zhang [26], for small ,0>  there exist brackets 

[ ] [( ) ]nKpu
i

l
i iff 1,,2,1,, "=  to cover 1,nΩ′′  and satisfy .≤− ∞

l
i

u
i ff  

Using the similar argument as that in the proof of consistency, we          
obtain that []{ }∞δ LN n ,,log ,L  is bounded by ( ),1log nKp  and          

hence by the fact that the ( )-2 PL norm is smaller than the -∞L norm, 

[]{ ,log N ( )}PLn 2, ,δL  is bounded by ( ).1log nKp  This leads to 

[]{ ( )} ( [] ( )) .,,log1,, 2/12/1
2,

0
2, δ≤+=δ δ

δ
δ ∫ nnn KpdPLNPLJ  LL  

Lemma 7.1 of Wellner and Zhang [24] indicates that under some 
conditions, the -∞L norm can be bounded by the -2L norm. Therefore, 

under (C1), (C2), and (C4), if ( ) δ≤1,01, , FFd n  for very small ,0>δ  then 

1,nF  and 1,0F  are very close to each other on [ ]., 11 rl  Thus, for 
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( ) ( )1,01, FlFl n −  in ,, δnL  we can easily show that { ( ) ( )} ≤− 1,01, FlFlP n  

.2δK  The structure of the log-likelihood guarantee that uniform 
boundedness of ( ).1,nFl  The key function ( )δφn  in Theorem 3.4.1 of  van 

der Vaart and Wellner [20] is given by ( ) ( ).2/12/12/1 nppv nnn δ+δ=δ/  

Note that 

( ) pvvpvpvvpvpv
n

pv nnnnnnnnvn 2/122/2/22 1 −− +=/  

( ( ) ).132/12/32/1 −− += vpvvpv nnnnn  

Therefore, if ( ) ( ).1,31 2 pv
n

pv nvnvpv /−<  This implies that if we 

choose { ( ) },31,min vpvrn −=  then ( ) 2/12 1 nrvr nnn ≤/  and ( )1,ˆnn FM  

( ) ( ).2
1,0

−−≥− npn rOFM  Hence, 

( ) ( ).1,ˆ 1,01,1 pnn OFFdr =   

Proof of Theorem 2. Theorem 1 states that ( ) pn OFFd =1,01,1 ,ˆ  

( { ( ) } ).3/1,min vpvn −−  As discussed in the proof of Theorem 1, under (C1), 

(C2), and (C4), Theorem 7.1 of Wellner and Zhang [24] implies that 

[ ] ( ) ( ) .0ˆsup 1,01,, 11 pnrlt tFtF →−∈  Similarly, by ( ) pn OFFd =2,02,2 ,ˆ  

( { ( ) } )3/1,min vpvn −−  with ( ) ( ( ) 2,
2

2,02,2,02,2
22

, nPLnn FFFFFd
U

+−=  

( ) ) ,2/12
2,0

22 VPLF−  we have [ ] ( ) ( ) .0ˆsup 2,02,, 22 pnrlt tFtF →−∈  For 

,2,1=i  let inin FS ,, ˆ1ˆ −=  and .1 ,0,0 ii FS −=  Then, [ ] ( )tS inrlt ii ,, ˆsup ∈  

( ) .0,0 pi tS →−  Next, under (D1) and (D2), by following the proof of 

Theorem 1 of Sun et al. [19], we can easily argue that α̂  is consistent 
estimator of .0α  

g 


